
 

 

 

 

G
L
S

A re
Explora

Guide
egac
SV-P

Bob Ha

eport to t
ation Ge

elines
cy P-W
P Dat

ardage,
and Do

Ma

the spon
eophysic

s for 
Wave
a Pro

 Michae
onald Wa

arch 201

nsors of t
cs Labor

 Sele
e Da
oces

el DeAn
agner 

15 

the  
ratory 

ecting
ta fo
sing 

ngelo,    

g 
r  
 

               

QAe35223 



 

1 
 

         Guidelines for Selecting Legacy P-Wave Data for SV-P Data Processing 
 

Bob Hardage, Michael DeAngelo, and Donald Wagner 
 

March 2015 
 

 
 

Abstract 
 

           There are several criteria that need to be satisfied and several investigations that need  
to be done to determine if legacy P-P data at a site of interest are appropriate for SV-P data 
processing. This report summarizes procedures that are currently practiced by the Exploration 
Geophysics Laboratory (EGL) to determine if SV-P data processing should, or should not, be 
initiated for a particular P-P seismic survey. These procedures are applied to a 3D seismic 
survey acquired in Scott County, Kansas, to illustrate our data-evaluation process in action.   
The failure of these particular Scott County legacy data to satisfy some key criteria required  
for SV-P data processing led to a decision to not initiate SV-P processing of the legacy P-P data 
available at this site. 
 
 

Introduction 
 
          A 22-mi2 3D P-P survey located in Scott County, Kansas, was offered to EGL as a candidate 
survey for SV-P data processing of vertical-geophone data. These legacy P-P data provided  
an opportunity for the Exploration Geophysics Laboratory (EGL) to apply data-qualification 
procedures to determine if it was prudent to initiate an SV-P data-processing effort with  
these particular P-P data. This report illustrates the procedures that were applied to evaluate 
these legacy data and the results that led to a decision to not initiate SV-P data processing.  
 
          The decision criteria that were applied to these legacy P-P data are discussed in the 
following report sections and are numbered for ease of reference. This numbering scheme does 
not imply any order of priority for the data-qualification requirements. The criteria that guide 
EGL’s logic in deciding if a particular legacy P-P seismic survey should be subjected to SV-P data 
processing are then assembled into a single-page format in Table 1 at the end of the report. 
This concise spreadsheet should be a convenient document for others to refer to as they 
consider the advisability of initiating SV-P processing of other legacy P-P data. 
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Decision Criteria 
 
Criterion 1 - Trace Length 
 
          When evaluating legacy P-P data for SV-P data processing, it is essential to determine  
if the length of the recorded P-P data traces is sufficient to include SV-P reflections from the 
deepest target of interest. If the P-P reflection from the deepest imaging objective appears at 
an image time of TPP milliseconds, then the SV-P reflection from that same interface should 
appear at an image time TSP, where  
 
     (1)                                           TSP = 0.5(1 + VP/VS)TPP. 
 
 In this equation, VP is the average P-wave velocity to the deepest target, and VS is the average 
S-wave velocity to that same depth. If there are no real data (either dipole sonic logs or VSP 
data) to quantify VP and VS velocities, then a person simply has to guess what the VP/VS velocity 
ratio should be at the prospect of interest. When forced to assume a value of VP/VS without the 
guidance of real data, it is prudent for purposes of trace-length qualification of the data to 
estimate a VP/VS value that is slightly higher than what VP/VS normal behavior is expected to be.  
 
          The times TPP and TSP used in Equation 1 are 2-way vertical travel times. The length of 
candidate P-P data traces should exceed this TSP vertical image time by a factor of 1/[cos(45o)] 
to ensure that reflections that follow slant paths between source and receiver stations 
separated a distance equal to twice the depth of the deepest target of interest can be utilized. 
Raypaths involving source and receiver stations at these maximum offsets would have incident 
angles of 45o at the deepest interface. Thus, the length of recorded P-P data traces (TLENGTH ) 
should be at least a factor of 1.4 greater than the TSP value shown in Equation 1, meaning 
 
   (2)                                             TLENGTH = 0.7(1 + VP/VS)TPP,  
 
P-P trace lengths greater than TLENGTH would be even more desirable, particularly when 
structural dip is involved. 

 
Application of Criterion 1 to Scott County Data 
 
          The trace length for the Scott County P-P data was 2 sec, and the deepest P-P reflection of 
interest occurred at a P-P vertical travel time TPP = 0.95 sec. Local dipole sonic log data indicated 
the average value of the VP/VS velocity ratio at this legacy-data site was approximately 2. Thus 
applying the equation TSP = 0.5(1 + VP/VS)TPP leads to the conclusion that this same deep target 
would occur at approximately a SV-P vertical travel time of TSP = 1.42 sec in SV-P image space. 
The time coordinates of reflections from this deep target at far offsets (offsets associated  
with take-off angles that are 45o from vertical) would be TSP/cos(45o) = 2 sec. An alternate 
calculation is 0.7(1 + VP/VS)TPP = 2 sec. Thus the trace length of the Scott County P-P data (2 sec) 
is barely acceptable for SV-P processing. A trace length greater than 2 sec would be preferred. 
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Criterion 2 – SV-P Data Acquisition Footprint 
 
          The source-receiver geometry used to record P-P data being considered for SV-P data 
processing should be analyzed to determine if that acquisition geometry imposes undesired 
data-acquisition footprint effects in SV-P data. An acquisition footprint can be defined as an 
anomalous behavior of a seismic attribute that appears as a geometrical pattern across seismic 
image space that matches the geometrical pattern of the source and receiver lines that acquired 
the data. Some geological features may align with short segments of a few source and/or 
receiver lines, but seismic attribute trends that exactly match the geometrical patterns of 
source and receiver lines across an extensive area cannot be portraying realistic geology.  
Such data artifacts are created by the data-acquisition geometry rather than by geological 
conditions. In analyzing effects introduced into SV-P data by source-receiver geometry, the 
common definition of acquisition footprint given above can be expanded to include any  
erratic behavior of SV-P stacking fold that occurs in an acquisition geometry when that same 
acquisition geometry produces a P-P stacking fold that is smooth and regular.  
 
          It is common for some source and receiver line geometries to not produce an acquisition 
footprint in common-midpoint (CMP) data P-P data, and yet generate an obvious acquisition 
footprint in converted-mode (CCP) data. This situation is encountered more frequently in  
older vintage 3D seismic programs that were acquired before serious thought was given to 
implementing source and receiver geometries that were more accommodating for both CMP 
and converted-mode data. Although the possibility of unwanted acquisition footprint effects  
in SV-P data needs to be investigated when evaluating any legacy 3D P-P data for SV-P data 
processing, it is particularly important to do so for older data.  
 
          Usually the best way to recognize that an acquisition footprint effect is embedded in 
recorded data is to calculate map views of stacking fold patterns across seismic image space.  
An analysis of SV-P stacking-fold for a given source-receiver geometry utilizes the same seismic-
design software that is used to quantify P-P and P-SV stacking folds. The only change required 
in applying this survey-design software to an analysis of SV-P data is that the VP/VS velocity ratio 
used to examine P-SV imaging conditions has to be inverted to VS/VP to analyze SV-P acquisition 
footprints. In other words, if a VP/VS value of 2 is used to create map views of P-SV stacking fold, 
then the same survey-design software will create map views of SV-P stacking fold if the velocity 
ratio is changed to 0.5. 
 
          Frequently a survey-design analysis will show that both P-SV and SV-P data have a 
stronger acquisition footprint than do their companion P-P data. This outcome does not 
necessarily mean SV-P data processing should not be attempted. Rather it indicates the size  
of the superbin that should be used to create SV-P stacked data so that SV-P stacking fold  
and offset parameters become reasonably smooth across SV-P image space. If SV-P superbin 
processing has to be implemented, we often see no problem in interpolating SV-P data 
constructed with modest-size superbins to create SV-P data with normal-size bins. The 
decisions whether to do such interpolation and how to do that interpolation will vary  
from seismic survey to seismic survey and from data processor to data processor. 
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Criterion 3 - Low-Frequency Energy in the Illuminating Wavefield 
 
              EGL has found that if there is not a rich amount of low-frequency energy in an 
illuminating wavefield produced by a P-wave source, there is a reduced probability that there 
will be robust SV-P reflections in vertical-geophone data. If the P source is a shot-hole explosive 
or a vertical impact, there is usually an attractive amount of low-frequency energy in shot 
gathers. The likelihood that weak energy levels exist in the lower frequency range of seismic 
field data increases when the source is a vertical vibrator because lower frequencies can then 
be deliberately excluded from illuminating wavefields. The likelihood that vibrator data will be 
deliberately designed to exclude low frequencies is high if data-acquisition decisions do not 
consider: (1) a direct-S mode will be produced by vertical vibrators, and (2) SV-P data may need 
to be utilized in addition to P-P data. Thus the comments here focus only on vibrator-source  
P-wave data because vibrators were used to create the Scott County data.  
 
          Two vibrator-sweep parameters are of particular interest when deciding if vibrator-source 
data are candidates for extracting SV-P reflections. Parameter 1 is the frequency assigned as 
the low-frequency end of the vibrator sweep. For generating SV-P data, the optimal choice for 
the low-end of a vibrator sweep is a frequency that starts at 6-Hz or lower (a 4-Hz low-end is 
ideal). If a vibrator sweep starts at 10-Hz or higher, there can be a serious reduction in the low-
frequency components needed to produce good-quality SV-P reflections. Much legacy P-P data 
have been acquired using vibrator sweeps that start at 10 Hz. 
 
          Parameter 2 is the sweep rate. Non-linear vibrator sweeps are not good for generating 
optimal-quality SV-P reflections because the sweep traverses lower frequencies rapidly and 
dwells longer at higher frequencies. Given a choice of P-P data acquired with a linear sweep 
rate or P-P data acquired with a non-linear sweep rate, EGL will opt for the linear-rate data 
every time. Non-linear sweeps rush through the low-frequency portion of the signal spectrum 
so fast that robust low-frequency data often do not exist in the illuminating wavefield. 
 
Application of Criterion 3 to the Scott County Data 
 
          For the Scott County data, the vibrator sweep range was 12 to 128 Hz, and the sweep  
was nonlinear at a 3dB per octave rate. Both of these sweep parameters are undesirable for 
generating robust SV-P data. One could decide at this point that it would be a mistake to 
attempt to extract SV-P reflections from the Scott County data. However, it is prudent to  
do a modest amount of data analysis to confirm if this concern is justified. One obvious  
data procedure would be to compute frequency spectra for several sets of trace gathers.  
A calculation of the frequency content of the Scott County P-P data is illustrated in Figure 4. 
This frequency spectrum confirms that important low-frequency components are not 
embedded in the vertical-geophone data.  
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Application of Criterion 4 to Scott County Data 
 
         P-wave static estimation was stated to not be a serious data-processing challenge for the 
Scott County data. However, we could not determine if S-wave static estimation would also  
be simple. Because we demonstrated that SV-P reflections would have poor signal-to-noise 
character because of the weak low-frequency energy in the illuminating SV-P wavefield  
(Figures 4 and 5), no effort was expended to investigate S-wave static issues at this Scott 
County site. It would be impossible to investigate S-wave static issues with such poor quality 
data. S-wave static estimation using vertical-geophone data will thus have to be a subject of  
a later EGL report. 
 
Criterion 5 - Construction of Synthetic Shot Gathers 
 
          If detailed VP and VS velocity information is available at a prospect where SV-P processing 
of P-P data is desired, it is important to use this velocity information to do full-elastic  
modeling of the wave modes that should exist in the data.  EGL uses VP and VS dipole-sonic-log 
information from local calibration wells to construct both 1D synthetic seismograms and 2D 
synthetic shot records that illustrate if, and how, P-P and SV-P reflections interfere with each 
other in vertical-geophone data. The optimal information needed for this modeling is provided 
by a dipole sonic log, but detailed interval velocities can also be provided by VSP data. 2D 
synthetic shot gathers are particularly important to data processors because the data allow 
processors to test strategies for separating SV-P and P-P wavefields.  
 
          Significant computational resources are required to do 2D full-elastic modeling, and such 
resources may not be available to some explorationists. Good-quality, full-elastic modeling 
codes exist in several seismic data-processing shops, research organizations, and oil/gas 
companies. Any of these modeling options can be used. EGL can also perform a reasonable 
amount of 2D modeling analysis for companies that need assistance in evaluating legacy P-P 
data for SV-P data processing. Simple, low-cost, 1D P-P and SV-P synthetic seismograms can 
also be helpful for identifying interferences between SV-P reflections from shallow interfaces 
and P-P reflections from deeper interfaces, and may in some cases be sufficient to identify 
interference between P-P and SV-P reflection events. The shortcoming of 1D modeling is that 
the data do not show how P-P and SV-P reflections interfere over the full offset range of seismic 
data, which is important information for data processors. 
 
Application of Criterion 5 to Scott County Data 
 
          A dipole sonic log was available reasonably close to the Scott County seismic survey.  
The VP and VS velocities read from this log are shown in Figure 6a. These velocity data were 
combined with a formation density log (Figure 6b) to construct a 2-D earth model that was,  
in turn, used to calculate the full-elastic data generated by a vertical-displacement source  
and recorded by vertical geophones. This earth model extended to approximately 4500 ft, the 
deepest depth coordinate of the dipole sonic log. The shallowest log measurement of P and S 
velocities and formation density was approximately 250 ft (Figure 6). Velocity and density 
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          The key result of this modeling is that SV-P reflections ASP and BSP are reasonably isolated 
from interference with P-P reflections and multiples. Thus it should be possible to extract a 
good-quality SV-P image and valid S-wave attributes from the Scott County data IF SV-P 
reflections existed in the data. However, Criterion 3 discussed earlier demonstrated SV-P 
reflections are not present because inappropriate sweep parameters were used to operate  
the vibrator sources (Figure 5). 
 
Criterion 6 - Physical Sizes of Source and Receiver Arrays  
 
          The ideal physical sizes of source and receiver arrays used to acquire S-mode data are a 
single-point source station and a single-point receiver station. Examples of a single-point source 
station would be a single shot-hole or a single vertical vibrator operated with no move-up  
while generating an illuminating wavefield. A single-point receiver would be only one geophone  
at each receiver station. The logic involved in using minimal-dimension source and receiver 
stations for acquiring S-mode data is that at some sites, S-wave statics can vary in such short 
distances that one has to be concerned about intra-array variations in S statics if either source-
station arrays or receiver-station arrays span an appreciable distance. 
 
           Intra-array statics refer to static changes that occur in distances that are shorter than the 
physical dimensions of a receiver array or a source array.  It is now a widely accepted principle 
that S statics often vary over shorter distances than do P statics, thus the physical sizes of P-P 
source and receiver arrays have to be considered in SV-P data processing even though those 
array sizes may not be a concern in P-P data processing. Because the physical dimensions of 
source arrays and receiver arrays have not been a serious concern in acquiring most P-P data 
surveys, large-dimension source arrays and receiver arrays will often be encountered when 
reviewing legacy P-P data for possible SV-P data processing. When considering P-P data options, 
EGL’s philosophy is, assuming that all other factors are equal, choose the data that were 
acquired with the smallest source-station and receiver-station dimensions.  
 
Application of Criterion 6  to Scott County Data 
 
          The sources that generated the Scott County data were two inline vertical vibrators with 
baseplates separated a distance of 40 ft. Although a single vibrator would be a more optimal 
source for SV-P imaging, this vibrator pair is a reasonable approximation of a point source. 
 
          The receivers that recorded the Scott County data were six vertical geophones deployed 
in a circle having a diameter of 12 ft. These six geophones are a reasonable approximation of a 
point receiver.  
 
Criterion 7 – Signal-to-Noise Character of SV-P Reflections 
 
          An example showing how SV-P reflections can be located in constant-velocity stacks of 
vertical-geophone data has been illustrated in Figure 5, but the logic used to identify the 
search-window position where SV-P reflections should appear in these velocity panels was  
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not discussed in detail in the text accompanying that figure. The important fact that the signal-
to-noise ratio of SV-P reflections can be evaluated with common CMP-based P-wave velocity 
panels now needs to be discussed and will be illustrated using better quality data than the data 
that were used in Figure 5. In order to judge the signal-to-noise character of SV-P reflections, it 
is essential to know how to locate those SV-P reflections in CMP-based constant-velocity stacks 
of vertical-geophone data. 
 
Application of Criterion 7 to Scott County Data 
 
          The application of Criterion 7 to the Scott County data has been illustrated in Figure 5. The 
constant-velocity CMP vertical-geophone stacks shown in that figure confirm that the signal-to-
noise ratio of the strongest SV-P reflection (feature labeled ASP) expected to exist at each 
velocity analysis location is quite low.  A valid question to ask at this point is “why should SV-P 
reflections , which need to be created using asymptotic conversion point (ACP) binning, even be 
seen in CMP-based constant-velocity stacks”? This question will be answered in this section. 
 
          The CMP velocity panels in Figure 5 were included in the discussion of Criterion 3 to 
confirm that the decision to not go forward with SV-P processing, based only on the undesirable 
vibrator sweep parameters that were used, was a correct decision. However, an important 
principle now needs to be emphasized about CMP constant-velocity stacks. This principle is that 
regardless of how compelling the logic is that any of the criteria discussed in this report indicate 
SV-P data processing should not be initiated, it is still advisable to acquire, or to create, CMP 
constant-velocity stacks of vertical-geophone data that will allow the signal-to-noise character 
of SV-P reflections to be examined. 
 
           The data examples in this section illustrate EGL’s current procedure for defining the 
positions of SV-P reflections in CMP-based constant-velocity-stack panels. The concepts used  
to analyze CMP constant-velocity stacks are illustrated in Figure 9. First, the VP/VS ratio needs  
to be known or assumed (Figure 9a). For legacy P-P data, constant-velocity panels are created 
using common-midpoint (CMP) procedures (Figure 9b). Equation 3 is then used to define the 
SV-P CMP stacking velocity VSP that corresponds to P-P stacking velocity VPP. The term A in 
Equation 3 is the VP/VS value associated with P-P stacking velocity VPP illustrated in Figure 9a.  
A second key equation that relates the image-time coordinate of P-P reflection PP1 in constant-
velocity panel VPP1 to the image-time coordinate of SV-P reflection SP1 in constant-velocity 
panel VSP1 is 
 
     (4)                                               TSP = 0.5 TPP (A + 1) 
 
This equation is developed in Figures 9c and 9d.  
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         Real data examples of constant-velocity stacks that confirm the concepts presented in 
Figure 9 through 11 are shown in Figure 12. The data in Figure 12a are constant-velocity ACP 
(asymptotic conversion point) stacks of horizontal-geophone data. Although the topic of this 
report is extracting SV-P reflections from vertical-geophone data, this horizontal-geophone data 
example is so impressive that it needs to be shown. Two stacking velocity curves are shown. 
The left-side curve is the ACP P-SV stacking velocity determined at the CDP where these data 
were analyzed, and the right-side curve is the P-P stacking velocity that was determined from 
CMP stacks of vertical-geophone data at this same CDP location and then inserted onto this 
horizontal-data velocity panel. Visual inspection of these data allows one to conclude that the 
circled  P-P and P-SV reflection packages represent images of the same geology; i.e., the P-P and 
P-SV reflection pairs linked by connecting arrows are depth-equivalent reflections. This example 
shows that both P-P and converted-mode reflections can be seen not only in constant-velocity 
CMP stacks, but also in ACP constant-velocity stacks. This fact is particularly impressive because 
it is often assumed that P-P reflections cannot be seen in horizontal-geophone data, but 
obviously in some instances, this assumption is not correct. 
 
          Returning now to the topic of this report, the data in Figure 12b are constant-velocity 
CMP stacks constructed from vertical-geophone P-P data. The P-P velocity function is on the 
right, the SV-P stacking velocities determined at this CDP are shown by the curve in the center, 
and a tentative SV-SV stacking velocity function determined from horizontal-geophone data is 
shown on the left. The positions of the depth-equivalent SV-P and SV-SV data windows drawn 
on the velocity panel were calculated using Equations 3 and 4 and a VP/VS value of 1.9. These 
calculated positions of expected SV-P and SV-SV reflections imply that these particular SV-P and 
SV-SV stacking-velocity curves “may” be slightly too fast. Even so, this real-data example 
verifies the principle that SV-P reflections, and sometimes (but not always) SV-SV reflections, 
exist in CMP constant-velocity stacks made from vertical-geophone data. 
 
          In summary, once good-quality P-P reflections are identified at image times PP1 and PP2 
in a panel of CMP-based constant-velocity stacks of vertical-geophone data (Figure 9), the  
2-step procedure for identifying the search windows where depth-equivalent SV-P reflections 
SP1 and SP2 should be found is:  
 

1. Move horizontally along the stacking velocity axis from velocity panel PP1 (or PP2) to a 
slower velocity panel defined by Equation 3, and then, 
 

2. Move vertically down the image-time axis to a later image time defined by Equation 4. 
 
Although this procedure defines the expected location of the depth-equivalent SV-P reflection 
in a suite of CMP constant-velocity panels, a modest sized search window should be centered 
on this calculated SV-P reflection location as illustrated in Figures 9 and 12b to allow for some 
estimation error.  
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Criterion 8 – SV-P Reflections Embedded in VSP Data 
 
          If vertical seismic profiling (VSP) data are available at a legacy P-P data site of interest, 
analysis of those data can provide valuable evidence of the presence of SV-P reflections and  
the quality of those reflections.  However, the effort to process VSP data approaches the effort 
required to process surface-based data so a decision to process VSP data before processing 
surface data is not to be taken lightly.  
 
          A second point is that no one other than EGL has ever extracted SV-P reflections from  
VSP data. Thus VSP data-processing assistance is only beginning to emerge across the industry 
because of the technical advance in VSP data processing that is just now being publicized by 
EGL. Rather than consume space here to explain the nuances of VSP SV-P data processing, 
readers are referred to the paper by Li and Hardage (2015) that discusses how SV-P reflections 
are extracted from VSP data. This paper is available by request or can be found by going to the 
EGL Web site – http://www.beg.utexas.edu/egl/ - and clicking on Publications. 
  
Application of Criterion 8 to Scott County Data 
 
          No VSP data were available local to the Scott County study site. Criterion 8 could not be 
applied to the Scott County P-P legacy data. 
 
 

Conclusions 
 
          This report summarizes the criteria that need to be considered when deciding whether a 
particular P-P legacy data set should be reprocessed to create SV-P data. These criteria were 
applied to a real P-P legacy seismic survey acquired in Scott County, Kansas, to decide if  
those data were candidates for SV-P data processing. These particular P-P data had serious 
shortcomings. First, the trace length was not sufficient. Second, there was inadequate low-
frequency energy in the SV illuminating wavefield created by the vertical vibrator source. This 
inadequate low-frequency energy was caused by a vibrator sweep that started at 12 Hz, rather 
than at 4 Hz or 6 Hz, and that then proceeded through the low-frequency range of vibrator-pad 
motion at a rapid rate of 3dB per octave. The direct-S mode created by this sweep had 
inadequate low-frequency energy to produce robust SV-P reflections that would image geologic 
targets. 
 
           Considerable attention is focused in this report on analyzing constant-velocity CMP stacks 
of vertical-geophone data to recognize SV-P reflections in legacy P-P data. This data criterion – 
examining constant-velocity CMP stacks – is one of the most definitive of all the criteria that 
can be used to decide if SV-P data processing should be initiated. After applying all of these 
data-evaluation criteria to the Scott County data, we found no evidence that SV-P reflections 
had sufficient signal-to-noise to justify SV-P data processing. 
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          All criteria discussed in this report are condensed into a concise tabulation appended as 
Table 1 at the end of this document. 
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